Optimization of Process Parameters for Cellulase Production by Bacillus licheniformis MTCC 429 using RSM and Molecular Characterization of Cellulase Gene
نویسندگان
چکیده
World is threaten to energy crisis which has advances research in bioenergy and specifically development of biofuels to replace petroleum products have increased the use of microbial enzyme like cellulases and xylanases as well as amylases for generation of reducing sugars for their conversion into bioethanol. Extensive research has been carried out in this view but alkaline cellulase production and molecular characterization is not studied in detail so far, this study will aid to achieve it. Optimization of fermentation parameters for production of cellulase was evaluated with the help of Response Surface Methodology (RSM) a statistical design, initial pH (9), moisture ratio (1:1) and incubation time (72 h) (run no.4) were found to be ideal parameters for optimum production of cellulase, substrate Jatropha seed cake without any pre-treatment was found to be an ideal source for cellulase production by Bacillus licheniformis under solid state fermentation. Cellulase gene of size 786 bp was isolated later using PCR techniques, confirmed with sequence analysis and ligated to pRSET A vector for the transformation to E. coli DH5α. Positive clones were identified and sequenced to justify the cloning. Sequence of Bacillus licheniformis endo-β-1,4-glucanase (Cel12A) gene showed 100% similarity with endoglucanase gene sequence from Bacillus licheniformis ATCC 14580 genome, shows successful cloning of Cel12A gene into pRSET A vector. Optimization of Process Parameters for Cellulase Production by Bacillus licheniformis MTCC 429 using RSM and Molecular Characterization of Cellulase Gene
منابع مشابه
Purification and biochemical properties of a thermostable, haloalkaline cellulase from Bacillus licheniformis AMF-07 and its application for hydrolysis of different cellulosic substrates to bioethanol production
A thermophilic strain AMF-07, hydrolyzing carboxymethylcellulose (CMC) was isolated from Kerman hot spring and was identified as Bacillus licheniformis based on 16S rRNA sequence homology. The carboxymethylcellulase (CMCase) enzyme produced by the B. licheniformis was purified by (NH4)2SO4 precipitation, ion exchange and gel filtration chromatography. The purified enzyme gave a single band on S...
متن کاملProduction of a cellulase-free alkaline xylanase from Bacillus pumilus MTCC 5015 by submerged fermentation and its application in biobleaching.
Here, we described the production of a cellulase-free alkaline xylanase from Bacillus pumilus MTCC 5015 by submerged fermentation and its application in biobleaching. Various process parameters affecting xylanase production by B. pumilus were optimized by adopting a Plackett-Burman design (PBD) as well as Response surface methodology (RSM). These statistical methods aid in improving the enzyme ...
متن کاملOptimization of the Cellulase Free Xylanase Production by Immobilized Bacillus Pumilus
Background: The extracellular xylanase secreted by microorganisms is a hydrolytic enzyme, which arbitrarily cleaves the β-1, 4 backbone of the polysaccharide xylan; an enzyme used in the food processing, bio-pulping and bio-bleaching. The commercial production of the xylanase is limited because of a higher cost involvement, which can be overcome by the cost-effective production...
متن کاملCellulase Production Under Solid-State Fermentation by Ethanolic Zygomycetes Fungi: Application of Response Surface Methodology
Background and Objectives: Cellulase is an important enzyme with multiple applications in industries, including food, laundry, pharmaceutical, textile, pulp, paper and biofuel industries. Solid-state fermentation (SSF) is a method for cellulase production, which includes several advantages, compared to submerged fermentation. In this study, cellulase was produced by three filamentous fungi, i.e...
متن کاملPurification and biochemical properties of a thermostable, haloalkaline cellulase from Bacillus licheniformis AMF-07 and its application for hydrolysis of different cellulosic substrates to bioethanol production
A thermophilic strain AMF-07, hydrolyzing carboxymethylcellulose (CMC) was isolated from Kerman hot spring and was identified as Bacillus licheniformis based on 16S rRNA sequence homology. The carboxymethylcellulase (CMCase) enzyme produced by the B. licheniformis was purified by (NH4)2SO4 precipitation, ion exchange and gel filtration chromatography. The purified enzyme gave a single band on S...
متن کامل